Ссылки на источники

Материал из didactis
Версия от 13:38, 7 января 2025; Nsa (обсуждение | вклад) (RAG)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

В данном разделе собираются все ссылки[править]

По поиску[править]

RAG[править]

---


Cotype Nano[править]

Cotype Nano

Остальное[править]

По дронам[править]


Материал для размышления[править]

Большие языковые модели (LLM) могут использоваться в качестве продвинутой поисковой системы. Нейросеть способна ответить на множество запросов пользователя, предоставить ссылки на разнообразные материалы. 2

Для увеличения точности и актуальности генерируемых ответов LLM интегрируют с технологией расширенной поисковой генерации (RAG). Она предполагает двухэтапный процесс: сначала выполняется поиск по ключевым словам из запроса пользователя для извлечения релевантной информации, затем полученные данные используются для генерации ответа с помощью LLM. 3

Также для расширения возможностей LLM в качестве поисковой системы используют систему Retrieval-Augmented Generation (RAG). Она включает компоненты поиска (retriever) и генерации (generator): 4

Компонент поиска отвечает за поиск и извлечение наиболее подходящей информации из внешних источников. Он анализирует запрос и находит фрагменты данных, которые могут быть полезны для точного ответа. 4 Компонент генерации использует найденную информацию для создания ответа. В отличие от традиционных моделей, которые полагаются только на предобученные знания, этот компонент может включать актуальные и релевантные данные, улучшая качество ответа. 4 Оценить ответ


5 источников

1

2

3

4