Искусственный интеллект

Материал из didactis
Версия от 19:45, 9 февраля 2021; Nsa (обсуждение | вклад) (Brand Analytics, АСМ Решения, Медиалогия, Kribrum)
Перейти к: навигация, поиск

Предметная область ИИ

История развития искусственного интеллекта является ярким примером разброда и шатания в рядах разработчиков этих систем. Это направление существует уже более 60 лет.

До последнего времени как у нас в стране так, впрочем и за рубежом, не существовало стандартов по по предметной области "Искусственный интеллект".


Указ

Национальная стратегия развития искусственного интеллекта на период до 2030 года

УТВЕРЖДЕНА Указом Президента Российской Федерации от 10 октября 2019 года N 490

основные понятия:

а) искусственный интеллект - комплекс технологических решений, позволяющий имитировать когнитивные функции человека (включая самообучение и поиск решений без заранее заданного алгоритма) и получать при выполнении конкретных задач результаты, сопоставимые, как минимум, с результатами интеллектуальной деятельности человека. Комплекс технологических решений включает в себя информационно-коммуникационную инфраструктуру, программное обеспечение (в том числе в котором используются методы машинного обучения), процессы и сервисы по обработке данных и поиску решений;

б) технологии искусственного интеллекта - технологии, основанные на использовании искусственного интеллекта, включая компьютерное зрение, обработку естественного языка, распознавание и синтез речи, интеллектуальную поддержку принятия решений и перспективные методы искусственного интеллекта;

г) смежные области использования искусственного интеллекта - технологии и технологические решения, в которых искусственный интеллект используется в качестве обязательного элемента, включая робототехнику и управление беспилотным транспортом;


л) открытая библиотека искусственного интеллекта - набор алгоритмов, предназначенных для разработки технологических решений на основе искусственного интеллекта, описанных с использованием языков программирования и размещенных в сети "Интернет";

В настоящее время в мире происходит ускоренное внедрение технологических решений, разработанных на основе искусственного интеллекта, в различные отрасли экономики и сферы общественных отношений. Указанные тенденции обусловлены следующими факторами:

в) высокая доступность инструментов (в том числе программ для ЭВМ с открытым кодом) для разработки на основе искусственного интеллекта технологических решений;

Основными направлениями разработки и развития программного обеспечения,

б) обеспечение условий для создания открытых библиотек искусственного интеллекта, в том числе стимулирование (включая материальное) специалистов к участию в российских и международных проектах по их созданию;

в) признание успешного участия специалистов в создании открытых библиотек искусственного интеллекта в качестве научного достижения;

Основными направлениями повышения уровня обеспечения российского рынка технологий искусственного интеллекта квалифицированными кадрами и уровня информированности населения о возможных сферах использования таких технологий являются:

Технический комитет

Технический комитет по стандартизации 164 «Искусственный интеллект» создан с целью повышения эффективности работ по стандартизации в области искусственного интеллекта (ИИ) на национальном, межгосударственном и международных уровнях. Основной задачей технического комитета является создание нормативно-технической базы и продвижение российских стандартов на международный уровень. ТК 164 утвержден приказом Росстандарта от 25 июля 2019 года № 1732 ссылка

Аналогичный международный комитет SC 42 «Artificial Intelligenсе» был создан годом ранее

презентация ссылки

Рабочие группы (РГ):

РГ 01 «Основополагающие стандарты»

  • унификация и стандартизация терминологии
  • обеспечение интероперабельности систем ИИ
  • обеспечение методологической преемственности в области методов и алгоритмов ИИ
  • повышение эффективности коллективных работ по созданию систем ИИ

РГ 02 «Большие данные»

РГ 03 «Качество систем искусственного интеллекта»

РГ 04 «Прикладные технологии искусственного интеллекта»

РГ 05 «Искусственный интеллект в образовании»

ссылка на презентацию


  • стандартизация требований к учебным материалам с целью формирования персональных образовательных траекторий при помощи технологий ИИ
  • стандартизация информации об образовательной активности обучающегося (цифровой след) и формирование стандартов по ее использованию, распространению и интерпретации с целью внедрения адаптивности и нелинейности образовательного процесса при помощи ИИ
  • стандартизация требований к образовательным платформам и средствам проведения обучения с целью интеграции в них технологий ИИ

РГ04 и РГ05 соответствуют WG 04 “Use cases and applications”


Классификация

ссылка

В настоящее время нет стандартизированной классификации систем ИИ. По ссылке можно посмотреть первую редакцию классификации систем ИИ. Среди множества оснований можно выделить Вид деятельности - Образование и наука. по основанию специализированные системы - экспертные системы, Системы естественного языка, Беспилотные аппараты. По основанию "знания" - по модели знаний процедурные или декларативные а также базы знаний; по управлению знаниями.


ещё ссылка


В языковом обучении

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ ДЛЯ ИЗУЧЕНИЯ ИНОСТРАННЫХ ЯЗЫКОВ

В языковом обучении (отечественные)

ссылка

Российские компании, ведущие разработки в области NLP, представлены на рынке в нескольких категориях. Прежде всего, это поисковики и компании, которые уже много лет занимаются текстовыми технологиями: «Яндекс», ABBYY, Mail.ru, PROMT и RCO (часть группы Rambler).

PROMT Mobile SDK — многофункциональный элемент для встраивания в мобильные приложения, позволяющий использовать технологию перевода PROMT полностью офлайн.


Вторая категория — крупные корпорации, которые лишь в последние 3‑4 года начали формировать свои компетенции в области ИИ. Например, Сбербанк, «Тинькофф банк», МТС

Третья компании

Центр речевых технологий

Системы аудио- и видеопротоколирования Нестор.BRIFF Применение технологии распознавания речи и автоматическая разметка стенограммы по участникам совещания существенно сокращает трудозатраты на выпуск финального протокола.

Доступ к учебным материалам

Эффективное дистанционное обучение требует мультимедийной подачи образовательных материалов, чтобы ликвидировать разрыв в качестве по сравнению с традиционным способом обучения.

«Центр речевых технологий» предлагает оригинальный подход к формированию и организации доступа к образовательным материалам на основе своих достижений в области голосового самообслуживания, голосовой биометрии и транскрибирования речи. Используемые продукты:

   Нестор.BRIEF 

Инструмент 1: Внедрите аудиовидеозапись теоретических и практических занятий и их распределенное транскрибирование Инструмент 2: Внедрите голосовую платформу для образовательного Интернет-портала Инструмент 3: Внедрите голосовую биометрическую аутентификацию


плюс «Варвара» — платформа для создания голосовых ассистентов с поддержкой технологий голосовой биометрии.

Just AI

Just AI Conversational Framework

Бесплатный фреймворк с открытым исходным кодом на базе Kotlin

Just AI Conversational Platform — платформа enterprise-уровня для разработки разговорных чат-ботов и ассистентов, понимающих естественный язык. Чат-боты, созданные в платформе, решают комплексные задачи бизнеса: поддержка клиентов, найм и обучение сотрудников, оформление заказов и продажа товаров.

Наносемантика

интеллектуальных чат-ботов, которые поддерживают диалог с человеком на естественном языке на заданные темы в текстовых и голосовых каналах.


«Элиза» — виртуальный консультант компании.


Naumen

Naumen University — информационно-аналитическая система для организации управления учебным процессом в высших и средних специальных учебных заведениях. Внедрение Naumen University позволит комплексно подойти к решению задач, стоящих перед современным учебным заведением.

Платформа Naumen Erudite позволяет с нуля создавать голосовых роботов и чат-ботов для обслуживания клиентов, внедрять их в контакт-центры, а также управлять работой ИИ-сотрудников с помощью понятных интерфейсов. В решении используются технологии искусственного интеллекта, которые обеспечивают высокий уровень диалоговых навыков роботов.


Решение Naumen University ориентировано как на коммерческие, так и государственные высшие учебные заведения.


Информационная система Naumen University предназначена для решения следующих задач:

   автоматизация всех уровней учебного процесса вуза, в т.ч. формирование учебных и рабочих планов, составление расписания учебных занятий, проведение сессий, перевод студентов с курса на курс и т.д.;
   обеспечение прозрачности управления вузом за счет понятной организационной структуры, формализованных процессов, оперативного контроля исполнения распоряжений;
   системный контроль исполнения требований Государственного образовательного стандарта, региональных и вузовских стандартов;
   упрощение стандартизации системы управления качеством;
   контроль полного цикла подготовки студента (от прохождения вступительных испытаний до последующего трудоустройства);
   формирование отчетности по различным аспектам деятельности вуза.

Узнать больше о задачах, решаемых

Текст заголовка

Журнал "Искусственный интеллект и принятие решений"

ссылки